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a b s t r a c t

This paper examines the behavior of spheres rising freely in a Newtonian fluid when the ratio between
the density of the spheres and that of the surrounding fluid is about 0.02. High-speed imaging is used
to reconstruct three-dimensional trajectories of the rising spheres. From the analysis of the trajectories
the magnitudes of the drag and lift forces exerted by the surrounding fluid are deduced. It is argued that
the two main contributions to the drag force are (i) a viscous drag that may be estimated from the stan-
dard drag curve by evaluating the Reynolds number using the actual value of the velocity, and (ii) an iner-
tial drag that arises essentially by the same mechanisms that cause the lift-induced drag familiar from
wing theory. Estimates of both contributions, the latter using visualizations of the wakes of the spheres,
give a favorable agreement with the measured drag forces. These findings are closely related to recent
numerical results in the literature on the forces experienced by oblate ellipsoidal bubbles rising in qui-
escent water.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The mean velocity of single solid spheres, rising or falling freely
in an infinite fluid, is of interest in numerous fields, including
chemical, mechanical, and environmental engineering. This veloc-
ity may be determined from a balance between the net gravita-
tional force and the mean drag on the sphere,

1
6
pd3jqs � qjg ¼ 1

8
pd2qU2

T CD; ð1Þ

together with a relation for the drag coefficient CD as a function of
the Reynolds number Re ¼ UT d=m. Here qs;d, and UT denote the den-
sity, diameter, and mean velocity of the sphere, respectively, q and
m are the density and the kinematic viscosity of the surrounding
fluid, and g is the gravitational acceleration. A simple and well-
known relation for the drag coefficient of spheres is that of Turton
and Levenspiel (1986),

CD ¼
24 1þ 0:173Re0:657
� �

Re
þ 0:413

1þ 16300Re�1:09 ; ð2Þ

a discussion of this relation and of others, together with a proposal
for an alternative

CD ¼
24
Re

1þ 0:150Re0:681
� �

þ 0:407
1þ 8710Re�1 ; ð3Þ
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is given in Brown and Lawler (2003). Both relations are applicable
for Re < 2� 105 and based on data from spheres held fixed in space
and falling spheres.

The data used to construct these relations do not include cases
in which the density ratio qs=q is small (on which we will focus in
this paper), as then the particles do not rise straight and relations
(2) and (3) are no longer applicable. Based on on experiments with
‘light’ solid spheres rising in water (Karamanev and Nikolov, 1992,
1996) and soap bubbles filled with helium or hydrogen rising in air
(Karamanev, 2001), the ratio qs=q < 0:3 has been suggested as
threshold of applicability of above equations. For these small den-
sity ratios and for Re > 130 Karamanev and co-workers suggest the
constant value CD ¼ 0:95 instead.1

For the light spheres which do not rise straight the simplistic
Eqs. (2) and (3) must be replaced by a more detailed force balance
analysis in the co-moving Frenet reference system of the sphere it-
self, as e.g., done by Shew et al. (2006) or very recently by Fernan-
des et al. (2008). This analysis goes back already to Kirchhoff and
for completeness is repeated in Section 3.3, to allow for an extrac-
tion of drag and lift forces for the spiraling light sphere.

The wake structures behind spheres has been studied for a long
time. Much of this research is related to spheres held fixed in space
(e.g., Schouveiler and Provansal, 2002, 1999). It is well-known that
the wake behind fixed spheres looses its axi-symmetry at
Re ¼ 212; the wake now consists of two stable vortex threads. At
1 This may be compared with the much smaller limiting value for high Reynolds
numbers following from Eqs. (2) and (3), namely CD ¼ 0:413 and CD ¼ 0:407,
respectively, that is found for heavy spheres.

mailto:c.veldhuis@marin.nl
mailto:d.lohse@utwente.nl 
http://www.sciencedirect.com/science/journal/03019322
http://www.elsevier.com/locate/ijmulflow


C.H.J. Veldhuis et al. / International Journal of Multiphase Flow 35 (2009) 312–322 313
Re ¼ 270 these threads become unstable and low amplitude undu-
lations set in. At Re � 345 the two continuous vortex structure
break up and a vortex shedding mechanism takes over. For freely
moving spheres the literature is less extensive; Magarvey and
MacLatchy (1965) show beautiful wake structures behind falling
spheres visualized with dye injection. The structures behind these
falling spheres are similar to those observed behind spheres held
fixed in space. Lunde and Perkins (1997) used a similar dye injec-
tion method to investigated the wake of ellipsoidal polystyrene
particles rising in water; they observe a highly unstable wake in
which the double vortex threaded wake structure is not visible.
They show that large amounts of vorticity are shed for zigzagging
particles at the outer positions of the zigzag trajectory; indicating
the influence of the wake on the path of the particle, and vice versa.
More recently Veldhuis et al. (2005) investigated the wake struc-
tures behind rising and falling spheres at high Reynolds numbers
in more detail. They showed that the wake structure and its influ-
ence on the sphere motion strongly depends on the density ratio;
e.g., a falling sphere with a density 5% more than that of water
clearly shows periodic vortex shedding without the sphere path
being influenced. Whereas the path of a rising sphere with a den-
sity 5% less than that of water shows periodic fluctuations equal to
the fluctuations in the wake of the sphere. In a reaction on numer-
ical work by Jenny et al. (2004) and Veldhuis and Biesheuvel
(2007) investigated the behavior of rising and falling spheres
experimentally in a larger range of density ratios, sphere diame-
ters, and viscosity. They found regions with low and high fre-
quency wake and path oscillations, and a region in which the
motion of the sphere becomes chaotic. The ’light’ rising spheres
of Karamanev and co-workers are part of this chaotic regime. As
Jenny et al. (2004) found in their numerical paper, Veldhuis and
Biesheuvel (2007) also found clear differences between the wakes
and motions of falling and rising. The strong influence of the wake
for lower density ratios has also been reported by Mougin and
Magnaudet (2006) in their numerical study of rising bubbles. They
calculated the time dependent forces experienced by the bubble
and showed that the wake behind an oblate ellipsoidal bubble
gives rise to a 30% increase of the drag experienced by the bubble
compared to drag calculated from potential flow (Levich drag).
Although there is a difference in shape between a sphere and an
ellipsoidal bubble and also a difference in boundary condition
(no-slip versus no-shear, respectively), resulting in a different vor-
ticity production, we might ask ourselves if a similar mechanism is
at work for light rising spheres.

To examine the questions raised by the work of Karamanev et
al. (1996) and Mougin and Magnaudet (2006), we have carried out
further experiments on the behavior of light ascending solid
spheres. A brief description of the materials and methods is given
in Section 2, followed by a discussion of the drag relation in Section
3. The trajectories of the light spheres ðqs=qu0:02Þ have been ana-
lyzed to deduce the forces exerted by the surrounding fluid; the
results are presented at the end of Section 3, together with a simple
model for the drag experienced by the spheres. In Section 4 we dis-
cuss our results and compare those with the literature. The paper
ends with conclusions.

2. Materials and methods

For the experiments we used a plexiglass tank with a height of
0.50 m and a cross-section of 0.15 m � 0.15 m, filled with decar-
bonated tap water. The temperature was maintained at a tempera-
ture of 21 �C ± 0.2, giving a fluid density of 998 kg m�3 � 0:05 and a
kinematic viscosity of 0:96� 10�6 m2 s�1 � 0:5� 10�8. A total of 31
experiments with light solid spheres were conducted. We used ex-
panded-polystyrene (EPS) spheres, density qs ¼ 18:5 kg m�3 � 1:5,
each with a different diameter in a range between 3.5 and
5.6 mm ± 0.1. In addition, to see any differences in their dynamics,
experiments with ascending and falling spheres with larger density
were carried out. These included spheres of the following materials
and properties: polypropylene ðqs ¼ 850 kg m�3; d ¼ 3:97 mmÞ;
low-density polyethylene (qs ¼ 925 kg m�3; d ¼ 6:35 mm and d ¼
7:94 mm); polystyrene ðqs ¼ 1058 kg m�3; d ¼ 3:97 mmÞ; polyam-
ide-imide (qs ¼ 1410 kg m�3; d ¼ 3:18 mm and d ¼ 3:97 mm); and
glass ðqs¼2472kgm�3

;d¼2:50mm;qs¼2629kgm�3;d¼4:00mmÞ.
The error for all diameters within this set is �0.01 mm and for
the density �5 kg m�3; the sphericity of the spheres is at least 0.99.

In a second series of experiments the water was heated from
above. This resulted in a small temperature gradient of 1.0 K/cm,
which allows to use a Schlieren-optics technique to visualize the
wakes of the spheres. This technique was originally developed to
obtain information on the wakes behind gas bubbles (de Vries
et al., 2002). More details of the improved set-up used here may
be found in Veldhuis et al. (2005) and Veldhuis and Biesheuvel
(2007).

According to numerical work by Jenny et al. (2004) it can take
several hundreds of sphere diameters before a sphere reaches its
final stage of motion. Before this stage the sphere can move along
non-reproducible paths. In order to verify whether the spheres
have reached their final stage of motion we performed a third ser-
ies of experiments in a large water tank (diameter 16 cm, length
2.5 m). Two mutually perpendicular views of the spheres are
recorded over a distance of 40 cm, 2 m after release of the sphere.
This results in a larger field of view; therefore the spatial resolution
of this recording method is smaller: 0.9 mm pixel�1, and so is the
temporal resolution. The smaller resolution gives rise to larger
errors in the reconstruction of the paths and forces. Therefore this
method is mainly used to verify the general behavior of the
spheres. In the discussion in Section 4 we will give some results ob-
tained with the large setup. The small setup, with higher resolu-
tion, is used for detailed analysis of the forces and the drag
coefficient. The results presented in the next section are obtained
using this setup.

3. Experimental results

3.1. The drag relation

The data for the dimensionless mean velocity UT , i.e., the
Reynolds number

Re ¼ UT d
m

; ð4Þ

and the drag coefficient as defined by Eq. (1),

CD ¼
4
3
jqs=q� 1jgd=U2

T : ð5Þ

have been compiled in Fig. 1. The ‘light’ ascending spheres
ðqs=qu0:02Þ are distinguished from the ‘heavy’ ascending spheres
ð0:3 Kqs=q < 1:0Þ by the use of the colors red (light) and green
(heavy); the data for settling spheres ðqs=q > 1:0Þ are indicated in
blue. The error-bars represent estimates of the uncertainty in the
determination of the physical parameters in each individual exper-
iment. The solid curve is the relation (2) proposed by Turton and
Levenspiel (1986) and the dashed line is the relation for light
spheres, CD ¼ 0:95 for Re > 130, proposed by Karamanev and
Nikolov (1992).

The figure confirms what was observed by Karamanev’s group,
namely that as the density ratio qs=q is sufficiently small and the
Reynolds number is sufficiently high, due to the resulting spiraling
there are significant deviations from the standard drag relation
applicable for spheres falling or rising straight. However, the
measured values of the drag coefficient for our light spheres, all
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Fig. 1. The drag coefficient CD , defined by (5), as a function of the Reynolds number
Re, based on the mean velocity of rise UT . Solid curve: Turton–Levenspiel relation
for heavy spheres ðqs=q > 0:3Þ. Dashed line: Karamanev–Nikolov relation for light
spheres ðqs=q < 0:3Þ. Color: experimental data with error-bars indicating the
maximum experimental error. Blue: qs=q > 1:0; green 0:3 < qs=q < 1:0 – both data
sets basically agree with the standard drag curve within the precision we can
achieve. Red: qs=q ¼ 0:02, black: qs=q ¼ 0:02 in large water tank. (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the web
version of this paper.)
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Fig. 2. Measured trajectories of spheres rising in water; origin of frame is located at th
tangential velocity of the spheres, with the numbers next to the color codes giving the cor
the diameter of the spheres. In all cases qs=q w 0:02. (a) d ¼ 3:4 mm;G ¼ 615; (b
d ¼ 5:4 mm;G ¼ 1231; (f) d ¼ 5:7 mm;G ¼ 1335. (For interpretation of the references to

314 C.H.J. Veldhuis et al. / International Journal of Multiphase Flow 35 (2009) 312–322
for Reynolds numbers much higher than 130, are lower than the
proposed value CD ¼ 0:95.

Jenny et al. (2003) have recently shown by numerical analysis
that the critical Reynolds number Recr at which the flow around a
‘free’ massless solid sphere looses axial symmetry is 205.8, a value
that is only slightly lower than the well-known critical value
Recr ¼ 211:9 for the flow around a fixed sphere (in other words,
an extremely heavy ‘free’ sphere). This suggests that the Karama-
nev & Nikolov’s ‘critical’ Reynolds number of 130 is merely the
value of the Reynolds number for which the Turton–Levenspiel
relation gives CDðReÞ ¼ 0:95.

3.2. Trajectories followed by light spheres

Fig. 2 shows the 3D path followed by the spheres, as they are
reconstructed from the two perpendicular side-views, for six rep-
resentative experiments. For all experiments the density ratio
qs=qw0:02 and the diameters range from 3.4 mm to 5.8 mm, so
that the Galileo number G has values between 615 and 1712. The
Reynolds number based on the mean velocity of rise increases from
889 to 1982; detailed information is given in the caption of the
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e position where the spheres enters the water tank. The color values represent the
responding value in m s�1. Spatial coordinates have been non-dimensionalized with
) d ¼ 3:9 mm;G ¼ 756; (c) d ¼ 4:3 mm;G ¼ 875; (d) d ¼ 4:8 mm;G ¼ 1032; (e)
color in this figure legend, the reader is referred to the web version of this paper.)
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figure. The character of these trajectories is revealed more clearly
by a projection on a horizontal plane, i.e., as if the spheres were ob-
served from above. These views are given in Fig. 3. Colors are used
to indicate the tangential velocity of the spheres, the numbers next
to the color giving the corresponding value in ms�1. The velocity
has the highest value where the path is most strongly curved.
The variations in the velocity are largest when the path is close
to a perfect zigzag (see the color codes), and least when the path
is nearly a pure helix (spheres following a perfect helicoidal path
do this at a constant velocity).

3.3. Drag and lift forces

To determine the forces experienced by the spheres it is helpful
to use a Frenet reference frame, i.e., a moving orthogonal frame
with the tangent to the curve t, the normal to the curve n, and
the binormal b as unit vectors, similarly as done by Shew et al.
(2006) or Fernandes et al. (2008). We chose this frame, because
we are interested in the actual drag, which acts in tangential direc-
tion and not in time averaged drag in vertical direction. Later on we
will see that the advantage of the choice for the normal and binor-
−1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5

x’

y’

0.251

0.255

0.260

0.264

0.269

0.273

−1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5

x’

y’

0.265

0.275

0.284

0.294

0.304

0.314

−1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5

x’

y’

0.261

0.283

0.305

0.327

0.348

0.370

a b

dc

e f

Fig. 3. Projection of the six measured sphere trajectories of Fig. 2 on the XY-plane. Furth
color in this figure legend, the reader is referred to the web version of this paper.)
mal vectors is that the forces in the case of a pure helix become
constant. Furthermore, the binormal will be discontinuous for a
zigzag at the position where the sphere crosses the centerline of
the zigzag; this makes it easier to interpret the time dependent
force data as we will see in Fig. 4.

Let rðtÞ denote the time-dependent position vector of the center
of the sphere with respect to a fixed reference frame and let sðtÞ
measure the distance travelled along the curve from some arbi-
trary initial instant. Then the unit vectors are defined as

t ¼ dr
ds
; n ¼ dt

ds
dt
ds

����
����; b ¼ t� n

�
; ð6Þ

while the variation of these unit vectors along the curve is given by
the Frenet–Serret formulae

dt
ds
¼ jn;

dn
ds
¼ �jtþ sb;

db
ds
¼ �sn: ð7Þ

Here j is the curvature and s is the torsion of the curve. An
instructive, alternative formulation is obtained on introducing
the Darboux vector
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Fig. 4. The components of the lift force acting on the spheres. Solid line: component in the direction of the normal to the curve (Fn). Dashed line: component in the direction
of the binormal to the curve (Fb). Further details as in the caption of Fig. 2.
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d ¼ stþ jb; ð8Þ

by which the Frenet–Serret formulae become

dt
ds
¼ d� t;

dn
ds
¼ d� n;

db
ds
¼ d� b: ð9Þ

Hence, the variation of the unit vectors consists of a rotation
around the instantaneous tangent and binormal at rates s and j,
respectively.

The linear momentum of the body is expressed with respect to
the Frenet frame, the motion of which is described by the transla-
tional velocity

U ¼ ds
dt

t ð10Þ

of the origin, and the angular velocity

X ¼ ds
dt
ðstþ jbÞ ð11Þ
about the instantaneous position of its axes. The momentum equa-
tion of the body is deduced from the Kirchhoff equations (see also
Mougin and Magnaudet, 2002a) and reads

dI
dt

� �
F

þX� I ¼ f1� ðq=qsÞgMgþ F; ð12Þ

where the first term on the left-hand side is the vector formed by
the rates of change of the components of the virtual momentum I
of the body with respect to the Frenet reference frame. The virtual
momentum of the body is the sum of the actual momentum of the
body and the impulse of the irrotational fluid motion that would re-
sult if the motion of the body would be generated instantaneously
from a state of rest. The first term on the right-hand side is the grav-
itational force, with M the mass of the sphere. The ‘extraneous’ force
F is what Lighthill (1986) calls ‘the vortex-flow force’, i.e., that part
of the force which the fluid exerts on the body due to the presence
of ‘additional vorticity’ in the flow. It may be noted that expressions
in terms of the actual vorticity distribution in the flow have been
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given by Kambe (1987) and Howe (1995); connections with earlier
work of J. M. Burgers are discussed in Biesheuvel and Hagmeijer
(2006). The components of the vortex-flow force ðFX ; FY ; FZÞ may
be determined from the experimental data on the trajectory rðtÞ,
and may subsequently be projected on the Frenet frame to obtain
ðFt ; Fn; FbÞ. The drag force on the sphere is FD ¼ �Ftt and the lift
force is given by FL ¼ Fnnþ Fbb. Here we approximate the rate of
change of the virtual momentum by the value it would have in a
stationary fluid,

dI
dt

� �
F

¼ 1þ 1
2
ðq=qsÞ

� 	
M

d2s
dt2 t: ð13Þ

Hence, conservation of linear momentum of the body is de-
scribed with respect to a Frenet reference frame by the three
equations
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Fig. 5. Analysis of the drag forces acting on spheres. Solid curves: measured drag force
Reynolds number based on the instantaneous velocity; dashed-dotted curves: estimates
and lift-induced drag. Parameters as given in the caption of Fig. 2.
1þ 1
2
ðq=qsÞ

� 	
M

d2s
dt2 � f1� ðq=qsÞgMgt ¼ Ft; ð14Þ

1þ 1
2
ðq=qsÞ

� 	
Mj

ds
dt

� �2

� f1� ðq=qsÞgMgn ¼ Fn; ð15Þ

� f1� ðq=qsÞgMgb ¼ Fb: ð16Þ

Time-traces of the components ðFn; FbÞ of the lift force are
shown in Fig. 4, negative values of Fn indicating that this compo-
nent is directed away from the center of curvature. Fig. 5 shows
the drag force FD (solid line); the other lines will be discussed in
Section 3.4. In both cases we see that the forces are steady for heli-
coidal motion. Here we have again assumed that the liquid around
the rising sphere is stationary and the drag therefore still aligned
with the particle motion.
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; dashed curves: viscous drag as given by the Turton-Levenspiel relation with the
of the lift induced drag; dotted curves: drag force as a combination of viscous drag



Fig. 7. Because of the continuous generation of new vorticity, which close to the
body consists of two parallel vortex threads, each with a strong axial component of
vorticity but in opposite directions, a sphere experiences a vortex-flow force Fv at
right angles to a plane through the two vortex threads. This force may be
decomposed in a lift force FL normal to the direction of motion and a lift-induced
drag Find opposite to the direction of motion of the sphere.
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For what concerns the lift forces, the origin of a force transverse
to the direction of motion of the spheres is the generation of a vor-
ticity distribution in the fluid with a hydrodynamic impulse that
has a component normal to the direction of the flow. Visualizations
of the wakes of solid spheres by Veldhuis et al. (2005) provided
clear evidence of the continuous generation of such vorticity distri-
butions with a structure which in the near wake consists of two
parallel vortex threads, each with a strong axial component of vor-
ticity (in opposite directions). Zigzagging and spiralling bubbles
also have such a ‘bifid wake’, as shown in de Vries et al. (2002)
and Mougin and Magnaudet (2002b). Similar vortex structures
are found some distance behind the wings of an airplane. At rela-
tively low Reynolds numbers this bifid wake structure may extend
a considerable distance downstream of the solid spheres (or bub-
bles). The threads may develop kinks and connect at fairly regu-
larly spaced positions. At higher Reynolds numbers ðRe > 800Þ
the wake becomes unstable and even turbulent already close to
the body; the experiments presented in this section are in this
regime. These instabilities may involve a vigorous redistribution
of the vorticity already present in the flow, yet the generation of
new vorticity, i.e., the addition of hydrodynamic impulse trans-
verse to the direction of motion of the body, varies much more
smoothly, as evidenced by the results for the lift forces of the pres-
ent experiments.

3.4. The nature of the drag

A simple method to estimate the drag forces experienced by the
spheres is to use the Turton–Levenspiel relation (2) with the Rey-
nolds number based on the instantaneous velocity UðtÞ of the
spheres. This procedure is similar to that suggested in Lighthill
(1986). It leads to rather unsatisfactory results, as may be seen
from Fig. 5, which also shows time-traces of the drag calculated
in this way (the dashed curve): the actual drag is not only larger,
but also shows a time-lag with respect to the calculated drag. A
possibly remedy, proposed, for example, by Sarpkaya (2001), is to
modify the added mass coefficient 1

2 ðq=qsÞM on the grounds that
this potential-flow concept needs adjustment to reflect the pres-
ence of vorticity in the flow and/or the action of viscosity. This
approach is not appealing considering the nature of the vortex-
flow force, as was explained clearly by Lighthill (1986) and more
recently by Leonard and Roshko (2001); it is well-established that
added mass is fully determined by potential flow concepts and
needs no correction for the contribution of vorticity.

Fig. 6 shows the drag, lift, and velocity of the zigzagging sphere
from sub-figure (e) of the previous figures. We clearly see that the
drag force and the velocity of the sphere are out-of-phase. Any esti-
mate of the drag force according to relation (2) will be in-phase
with the velocity and will therefore not give a correct estimate of
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Fig. 6. -- ---, Drag force; and �–�, lift force (left axis), and ––, tangential velocity
(right axis) for the sphere from the previous sub-figure (e).
the actual drag force. A phase shift towards the actual drag can
be established by also taking into account the effect of the lift
force; this approach to drag will be discussed below.

It is better to view relation (2) as giving a good estimate of the
viscous contribution to the vortex-flow force, while an estimate of
the true drag follows from adding a (predominantly inertial) con-
tribution, which in wing theory is referred to as the ‘lift-induced
drag’. This contribution, as illustrated in Fig. 7, arises essentially
because the instantaneous force, Fv , associated with the generation
of a vorticity structure which near the body consists of two vortex
threads with oppositely directed axial vorticity, is not at right an-
gles with the instantaneous direction of motion of the sphere.
Hence, the lift-induced drag arises because the instantaneous
direction of motion is not parallel to the plane through the two
threads at the place of origin of these threads. If the angle between
the velocity vector and that plane is w, then the true force that re-
sults from the generation of the vortex threads is directed normal
to that plane and has magnitude

ðF2
n þ F2

bÞ
1
2= cos w:

It may be decomposed into components in the directions n and
b with magnitudes Fn and Fb, respectively, which have been
Fig. 8. The angle between the vector a and the horizontal XY-plane is called wa. The
angles with the horizontal in projections on the XZ-plane and YZ-plane are waX and
waY , respectively. Eq. (19) gives a relation between these three angles.
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Fig. 9. Schlieren visualizations of the wake of rising spheres, viewed from two orthogonal directions. The yellow line indicates the path followed by the sphere during the
time interval t between the moment of entering the field-of-view and the moment that the picture was taken. The angles wtX and wtY are the angles between the direction of
motion and the horizontal as observed in projections on the XZ-plane and YZ-plane ; similarly, wvX and wvY are the estimated angles between the horizontal and the plane
containing the two vortex threads. (a) qs=qw0:02; d ¼ 3:7 mm;Gw775; t ¼ 0:125 s; (b) qs=qw0:02;d ¼ 5:8 mm;Gw1712; t ¼ 0:110 s. With time t the time passed from the
moment the sphere path is plotted. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.)
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determined experimentally, and a further component in the direc-
tion opposite to the tangent t with magnitude

Find ¼ ðF2
n þ F2

bÞ
1
2 tan w: ð17Þ

Let wt be the angle between the tangent to the trajectory and
the horizontal plane, and similarly let wv be the angle between
the ‘vortex-plane’ and the horizontal plane. Hence the angle w be-
tween the velocity vector and the vortex-plane is given by

w ¼ wv � wt: ð18Þ

We now define the angle between the vector a and the horizon-
tal XY-plane as wa, see Fig. 8. The angles with the horizontal in pro-
jections on the XZ-plane and YZ-plane are called waX and waY ,
respectively. From elementary geometry one then obtains

1
tan2 wa

¼ 1
tan2 waX

þ 1
tan2 waY

: ð19Þ

We have tried to obtain information on the time-variation of
the angle w from flow visualizations made with our Schlieren-op-
tics set-up. Two examples of Schlieren visualizations of the wakes
of rising solid spheres are shown in Fig. 9, in which we have indi-
cated the angles wtX ;wvX ;wtY , and wvY ; the values of qs=q and G are
based on the measured temperature at the center of the field-of-
view. Obviously, this procedure can only yield rough estimates of
wvX and wvY , because the turbulence in the wake makes the pic-
tures ‘blurry’ and the wakes are highly ‘curved’. Furthermore, the
angle w is best calculated when the sphere crosses the centerline
of the zigzag, where the path is (almost) straight. Now the vorticity
structure is also straight, enabling a good prediction of the angle w.
For a typical Schlieren experiment this results in two or three
measurement points per experiments for the angle w, approxi-
mately one every 0.1 s. On using Eqs. (18) and (19) we obtain
w ¼ 26:1� � 1 for the case shown in Fig. 9(a) and w ¼ 37:5� � 1
for that in Fig. 9(b). From a whole range of visualizations for values
of G between 600 and 1800 it appears that along the sphere trajec-
tories the angle w varies roughly between 25� to 38�. Given the
uncertainty in determining the variation of w with time, and in or-
der to have some definite value, we chose a fixed angle w ¼ 30� and
used this to evaluate expression (17).2 This procedure gives the
dashed-dotted curves shown in Fig. 5 (which in this case is just
1
3

ffiffiffi
3
p

times the magnitude of the lift force). Finally, adding the lift-in-
duced contribution to the viscous contribution as estimated from the
2 Choosing the arithmetic mean of the two extreme values would give very similar
results – 30� is thought to be an order of magnitude estimate.
relation (2), results in an estimate of the drag experienced by the
spheres that is presented in Fig. 5 as the dotted curves. The agree-
ment with the measured drag (the solid curves) turns out to be
excellent. This supports our view of the mechanisms that govern
the generation of flow-induced forces on the spheres.

Note that we used the angle w extracted from Schlieren exper-
iments as input for non-Schlieren experiments. Hence, the actual
angle w remains unknown. If we had evaluated the Schlieren
experiments as detailed as the non-Schlieren experiments, larger
uncertainties would have emerged, as the image analysis cannot
clearly distinct between the sphere and its wake. Therefore the
sphere position is not properly detected, resulting in errors in path,
curvature, velocity, and therefore the forces of the sphere. How-
ever, the previous discussion showed that the use of Schlieren data
for non-Schlieren experiments is justified and provides excellent
agreement between theory and experiment.

4. Discussion

Karamanev and co-workers mention that in their experiments
all the light spheres ascended along a helicoidal trajectory. In our
experiments, even in repeated trials with spheres of the same
diameter, no preferred type of path was observed. Each different
path gave a different value for the mean rise velocity, which is
the reason for the large scatter in our data for CDðReÞ. Karamanev
and co-workers probably also had the same problems with non-
reproducible paths; they only observed the spheres from one side,
so they could not distinguish between zigzag or helix. They ob-
served almost identical path frequencies and pitch (as we do)
and concluded that all spheres rise along helices; a conclusion
which cannot be drawn from one side view.

It is possible that our small tank, with a height of 0.50 m, was
too short, and that if the spheres were allowed to rise over a much
longer distance they would eventually end-up following helicoidal
paths. Jenny et al. (2004) have recently shown by numerical simu-
lations that the ðG;qs=qÞ parameter space may be divided into ‘re-
gimes’, with distinct characteristics of the ‘asymptotic states’.
These asymptotic states refer to non-transient paths, i.e., pathes
of spheres that have been rising for a sufficiently long time. Our
experiments correspond to positions in this parameter space which
all lie well within the ‘chaotic regime’. Chaotic trajectories are
characterized by periods with vigorous excursions in random
directions, interrupted by periods in which the motion is seem-
ingly ‘smooth’ or ‘well-behaved’. The examples shown in Figs. 2
and 3 are not the paths that would be expected from the analysis
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of Jenny et al. (2004) for homogeneous spheres in the chaotic re-
gime; the paths are more ‘erratic’ and less reproducible. To inves-
tigate the effect of the length of the water tank the experiments
with light polystyrene spheres are also conducted in a larger water
tank (diameter 16 cm, height 2.5 m). We still observed all kinds of
trajectories; Fig. 10 shows the reconstructed top views of two rep-
resentative experiments. It is possible that the lack of reproducibil-
ity is due to small imperfections of the polystyrene spheres. They
are made by expanding polystyrene with air, which destroys the
homogeneity of the sphere. Jenny et al. (2004) performed numeri-
cal experiments which show that a small inhomogeneity of the
sphere’s mass distribution causes the sphere to move in an erratic
path, whereas a homogeneous sphere follows a path which is well
predicted by their numerical results (see their figures 30 and 31). A
second reason for the lack of reproducibility might be the still
rather limited field of view (some 100 sphere diameters). This does
not enable us to fully characterize the onset of the chaotic behavior
as Jenny et al. (2004) did in their numerical work.

The drag coefficient for these experiments in the large tank, as
calculated from (5), are also given in Fig. 1 in black; clearly there
is no difference with the spheres rising in the small tank. Fig. 11
shows the drag forces experienced by the two spheres, where the
vortex angle w is again taken to be 30�. We see that our drag model
agrees well with the actual drag experienced by the spheres, espe-
cially with respect to the phase. We also observe a small deviation
in the magnitude of the drag, which is probably due to the lower
resolution of the digital data obtained with this setup, resulting
in less accurate measurement of the sphere position and therefore
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Fig. 11. Solid curves: measured drag force; dashed curves: viscous drag as given by the
velocity; dashed-dotted curves: estimates of the lift-induced drag; dotted curves: drag fo
in the caption of Fig. 10.
velocity. In conclusion, we can say that the drag is properly esti-
mated by the model presented in the previous section for all
spheres, irrespective of their non-reproducible and erratic trajecto-
ries. The small remaining differences between the measured drag
and the modeled drag might be due to a rotation of the sphere;
an aspect which has not been addressed in the present investiga-
tion, because this rotation could not be determined from the
experimental data. Fig. 5 shows that the difference is largest for
zigzagging spheres; the sphere might rotate due to sudden changes
in the sphere path. Another possibility could be that the angle w
changes considerable during the sharp turns. Future research
should focus on this aspect to improve our model for drag.

Our results can be interrelated with recent numerical findings
of Mougin and Magnaudet (2006) on oblate ellipsoidal bubbles ris-
ing in water. They propose a similar approach to estimate the drag,
where the viscous contribution is based on a calculation of the rate
of dissipation in a potential flow (Levich drag). They find that the
actual drag experienced by a spiraling bubble consists for 30% of
lift-induced drag; we find lift-induced drag percentages between
21% and 26% of the actual drag. Hence, although the mechanism
for vorticity production, and therefore the amount of vorticity, is
different for a sphere and a bubble the influence of the induced
drag on the actual drag is similar. Mougin and Magnaudet (2006)
also observed that for ellipsoidal bubbles rising along a helicoidal
trajectory the lift forces in the directions of the normal and the
binormal to the path have equal magnitudes. We find the same re-
sult for a sphere rising along an approximately helicoidal path (see
Fig. 4(e)). Recently, Shew et al. (2006) and Shew and Pinton (2006)
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Turton–Levenspiel relation with the Reynolds number based on the instantaneous
rce as a combination of viscous drag and lift-induced drag. Further details are given
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reported that the bubbles in their experiments do not experience a
lift-induced drag; contradicting the findings of Mougin and Mag-
naudet (2006). They state that the actual drag can be modeled by
Levich drag with a maximal error of 1%. In our bubble experiments
the measured lift-induced drag is similar to that of Mougin and
Magnaudet (2006).

Finally, we want to make a remark on a deduction made in de
Vries et al. (2002) and Veldhuis et al. (2005), namely, that a pure
zigzagging motion of a bubble or a solid sphere is accompanied
with a wake that consists of two vortex threads which merge at
the centerline of the zigzag and subsequently reappear with re-
versed direction of the vorticity within the threads. Our results
on the lift force show that this needs correction. In Fig. 4(e) it
may be seen how the normal component of the lift force on a zig-
zagging sphere suddenly jumps from a positive value to a negative
value, while the magnitude remains the same. This reason for this
behavior is that the normal to the path in the Frenet reference
frame is directed towards the center of curvature. This forces the
normal to change direction; the lift force does not change, it merely
changes direction with respect to the normal to the curve. In other
words, along the zigzag path points of zero curvature do not corre-
spond to points where the lift force vanishes and changes direction.
At the instant that the vortex threads merge no lift is generated,
and since the curvature of the path vanishes at the centerline of
the zigzag, this would imply a violation of Eq. (15), because the first
term on the left-hand side and the term on the right-hand side are
zero. What really happens is that at the centerline of the zigzag lift
is produced to balance the gravitational force in the direction nor-
mal to the zigzag path, while the merging of the threads and the
vanishing of the lift occurs some distance away from the center-
line. Eq. (15) shows that the value of the gravitational force de-
pends on the density ratio. A density ratio close to one implies a
small gravitational force, hence a small lift force. The experiments
presented in Veldhuis et al. (2005) used solid spheres with a den-
sity close to that of the surrounding fluid, so the error was difficult
to detect. But it becomes clear immediately from Fig. 4(e), and in
hindsight should have been noticed on inspection of Fig. 2 of de
Vries et al. (2002) of a zigzagging gas bubble.
5. Conclusions

By image analysis of stereoscopic recordings of the motion of
the light ðqs=qu0:02Þ rising spheres in still water, three-dimen-
sional reconstructions of the trajectories were made, which on fur-
ther analysis yielded the drag and lift forces experienced by the
spheres. Beyond a Reynolds number between Re ¼ 205:8 and
211.9 the standard drag curve becomes invalid for these spheres,
due to their spiraling. It was proposed that then instead the drag
force consists of (i) a viscous contribution that may be estimated
from the standard drag curve by evaluating the Reynolds number
using the actual value of the velocity, and (ii) an inertial contribu-
tion that arises essentially by the same mechanisms that cause the
lift-induced drag on airplane wings. Estimates of both contribu-
tions, the latter using visualizations of the wakes of the spheres,
give a favorable agreement with the measurements. The remaining
differences between the measured drag and the modeled drag
might be due to a rotation of the sphere; an aspect which has
not been addressed in the present investigation, because this rota-
tion could not be determined from the experimental data. Future
research should focus on this aspect to improve our model for drag.

There is obviously a connection of our study on freely rising
spheres with work done on vortex-induced vibrations, as already
exemplified by references to the papers of Lighthill (1986),
Leonard and Roshko (2001) and Sarpkaya (2001). This connection
is most intimate, perhaps, with studies of the motion of elastically
mounted and tethered spheres, an example of which is given in
Govardhan and Williamson (2005). Their description of the origin
of the lift force on the spheres is essentially similar to what has
been put forward by our group in the context of freely rising gas
bubbles and solid spheres. It would be interesting to try to combine
their beautiful visualizations and DPIV measurements of the
sphere wakes with the simple model of the drag force given in Sec-
tion 3.4. Given the great detail with which the vorticity distribu-
tions was characterized, it may even be possible to estimate the
vortex-flow forces experienced by the spheres on using the expres-
sions derived by Kambe (1987) and Howe (1995).
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